We are at risk of boring ourselves to death? Less than 5% of occupations are 100% automatable, according to estimates. However, 30% of the work involved in most jobs could be carried out by machines. For the overworked employee, a reduced workload sounds attractive. A roboticized future in which humans are on permanent vacation might be idyllic.
However, there is a bias common to cognitive psychology, neuroscience, and economics against the costly and tiring nature of effort. This bias may cause us to underestimate both the value of exertion and the risks boredom brings.
The future will be automated and augmented. Some roles will be entirely redundant. Many will be replaced in part. Already, complex tasks once considered too difficult to automate are being performed by machines. Automated systems generate complicated medical diagnoses and treatment plans; algorithms create detailed, responsive exercise programmes; and artificially intelligent therapists offer patients low-cost programmes to overcome social anxiety.
Employment in high-income, cognitively demanding and creative jobs is likely to increase. While up to 20% of a senior executive’s role could be automated, according to some studies, such technology is likely to be assertive and enhancing, facilitating deeper insights, better decision-making and multiplied output. Work may become less stressful, as machines help us to manage information flows more effectively and release us to focus on creativity, collaboration and complex problem solving. These are qualities that will be essential in the coming Fourth Industrial Revolution.
Much low-income, manual work will still require human workers. It will take time to roboticize these roles entirely. For example, automated vehicles will deliver goods to local hubs. But it will be some years until an army of cheap robots is smart enough to navigate the ‘final mile’ through unpredictable entrances, up stairways and into small, rusty letterboxes.
The greatest risk is for people in low-income manual work and medium-income work, in which the majority of the tasks are clearly defined and repetitive. More roles will become supervisory, interspersed with brief periods of activity. Paradoxically, work may become less effortful but more tedious and fatiguing.
The consequences of effort
Prevailing models in cognitive psychology, neuroscience, and economics suggest that mental or physical effort is costly. Given a choice, we prefer to avoid it. In this light, assistive technology which reduces effort may be welcomed. Perhaps it will make us less stressed, less tired and offer us more free time. A utopian angle might herald a future of automated abundance and mass leisure.
When we consider related historical transformations, automation rarely seems to displace human activity entirely. But it always changes the nature of human work. These changes are often unintended and unanticipated. At Hintsa Performance, we are considering emerging research which increasingly recognises links between effort and motivation, cognitive control, value-based decision-making and health conditions. The perspectives we find offer new insights into the future of work.
The effort paradox
Effort can be defined as the subjective intensification of activity – mental or physical – in the service of meeting our goals. As we focus on ways to reduce human effort, we may be overlooking its benefits.
Outcomes can be more rewarding if we apply more, rather than less, effort to achieve them. The ‘IKEA effect’ suggests that we will be prepared to pay more for objects that we have effortfully built, relative to identical objects that someone else built for us.
Effort can also be valuable and rewarding in its own right. Many individuals enjoy cognitive effort for its own sake. ‘Need for cognition’ is a measurable trait, associated with an individual placing a high value on mental effort and seeking it out. Recent research sheds light on this phenomenon, helping us to understand why effort can offer intrinsic value. The ‘effort paradox’ explores how the same outcomes can be more rewarding if we apply more, rather than less, effort. It explains how we may select options because they require effort, such as racing a triathlon or climbing a mountain.
Effort is a habit
As we learn to exert ourselves, we seem able to make more habitual applications of effort over time. Effort plays a critical role in human performance; students show better learning outcomes when their work is effortful. Effort is associated with improved wellbeing, demonstrating positive associations with enhanced goal-directed behaviour: we get better at doing what we aim to do, rather than be side-tracked by distraction or temptation.
As we automate more and more number of human tasks, we should consider the value of what we are eliminating. What happens if we miss out on positive experiences associated with effort? Will we lose the ‘effort’ habit in the process, with deleterious effects further down the line?